Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Appl Biochem Biotechnol ; 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2313930

ABSTRACT

Remdesivir (REM) and dexamethasone (DEX) both have been used to treat coronavirus disease 2019 (COVID-19). The present study aimed to evaluate the effects of REM and DEX on kidney structure and function with particular focus on the probable renal sirtuin-1 (SIRT1) expression alteration in rats. Twenty-four male Wistar rats were divided into four groups, as follows: group A (control) received normal saline (5 mL/kg/day for 10 days); group B (REM) received REM (17 mg/kg/day on the first day, and 8.5 mg/kg/day on the 2nd-10th days); group C (REM + DEX) received both REM (17 mg/kg/day on the first day, and 8.5 mg/kg/day on the 2nd-10th days) and DEX (7 mg/kg/day, for 10 days); group D (DEX) received DEX (7 mg/kg/day for 10 days). Renal SIRT1 expression and kidney structure and function-related factors were evaluated by standard methods. The mean levels of urea in the REM + DEX group (60.83 ± 6.77, mg/dL) were significantly higher than in the control (48.33 ± 3.01, mg/dL; p = 0.002) and DEX (51.22 ± 4.99, mg/dL; p = 0.018) groups. The mean levels of creatinine in the REM (0.48 ± 0.08, mg/dL) and REM + DEX (0.50 ± 0.04, mg/dL) groups were higher than in the control group (48.33 ± 3.0 mg/dL) significantly (p = 0.022 and p = 0.010, respectively). The renal SIRT1 expression was significantly (p = 0.018) lower in the REM + DEX group (0.36 ± 0.35) than in the control group (1.34 ± 0.48). Tubulointerstitial damage (TID) scores in REM + DEX-treated rats (2.60 ± 0.24) were significantly higher than in the control (0.17 ± 0.17, p = 0.001) and DEX (0.50 ± 0.29, p = 0.005) groups. The administration of DEX and REM might lead to kidney injury associated with SIRT1 downregulation.

2.
Eur J Pharmacol ; 933: 175267, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2031262

ABSTRACT

The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1ß, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.


Subject(s)
COVID-19 Drug Treatment , Case-Control Studies , Chemotactic Factors/pharmacology , Cytokines/metabolism , Humans , Immunity , Inflammation Mediators/pharmacology , Interleukin-6 , Killer Cells, Natural , Pandemics , Tumor Necrosis Factor-alpha/metabolism
3.
Cell Commun Signal ; 20(1): 131, 2022 08 29.
Article in English | MEDLINE | ID: covidwho-2021304

ABSTRACT

During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract.


Subject(s)
COVID-19 , Adaptive Immunity , Humans , Immune System , Immunity, Innate , SARS-CoV-2
4.
Cell Commun Signal ; 20(1): 106, 2022 07 16.
Article in English | MEDLINE | ID: covidwho-1938332

ABSTRACT

BACKGROUND: The COVID-19 pandemic has become the world's main life-threatening challenge in the third decade of the twenty-first century. Numerous studies have been conducted on SARS-CoV2 virus structure and pathogenesis to find reliable treatments and vaccines. The present study aimed to evaluate the immune-phenotype and IFN-I signaling pathways of COVID-19 patients with mild and severe conditions. MATERIAL AND METHODS: A total of 100 COVID-19 patients (50 with mild and 50 with severe conditions) were enrolled in this study. The frequency of CD4 + T, CD8 + T, Th17, Treg, and B lymphocytes beside NK cells was evaluated using flow cytometry. IFN-I downstream signaling molecules, including JAK-1, TYK-2, STAT-1, and STAT-2, and Interferon regulatory factors (IRF) 3 and 7 expressions at RNA and protein status were investigated using real-time PCR and western blotting techniques, respectively. Immune levels of cytokines (e.g., IL-1ß, IL-6, IL-17, TNF-α, IL-2R, IL-10, IFN-α, and IFN-ß) and the existence of anti-IFN-α autoantibodies were evaluated via enzyme-linked immunosorbent assay (ELISA). RESULTS: Immune-phenotyping results showed a significant decrease in the absolute count of NK cells, CD4 + T, CD8 + T, and B lymphocytes in COVID-19 patients. The frequency of Th17 and Treg cells showed a remarkable increase and decrease, respectively. All signaling molecules of the IFN-I downstream pathway and IRFs (i.e., JAK-1, TYK-2, STAT-1, STAT-2, IRF-3, and IRF-7) showed very reduced expression levels in COVID-19 patients with the severe condition compared to healthy individuals at both RNA and protein levels. Of 50 patients with severe conditions, 14 had anti-IFN-α autoantibodies in sera. Meanwhile, this result was 2 and 0 for patients with mild symptoms and healthy controls, respectively. CONCLUSION: Our results indicate a positive association of the existence of anti-IFN-α autoantibodies and immune cells dysregulation with the severity of illness in COVID-19 patients. However, comprehensive studies are necessary to find out more about this context. Video abstract.


Subject(s)
COVID-19 , Autoantibodies , Cytokines/metabolism , Humans , Interferons , Killer Cells, Natural , Pandemics , RNA, Viral , SARS-CoV-2 , Signal Transduction
5.
Cell J ; 24(4): 182-187, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1836303

ABSTRACT

Objective: COVID-19 is an infectious disease that has become pandemic with a high mortality rate. This study aims to provide new insight into the relations between SARS-CoV-2 and the Endocrine system. Materials and Methods: In this cross-sectional study, we have hospitalized 60 patients with a positive SARA-CoV-2 PCR test. The information of complete blood count and endocrine hormones was obtained when the patients were admitted to the hospital or for a maximum of 4 days onset the hospitalization. Results: Of 60 patients with COVID-19, forty-four (73.33%) had at least one abnormality mean item >×3. In total, 26 (43.33%), 21 (35%), 18 (30%), 13 (21.67%), 31 (51.67%), 12 (20%), 30 (50%), 25 (41.67%) patients having estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, testosterone, cortisol and thyroid stimulating hormone (TSH) abnormal test results, respectively. There was no change in creatinine levels. FSH has shown drastic changes in both sexes' intensity (F: 769, P<0.0001). Although TSH had many abnormalities in women, analysis has shown no significant P value (P=0.4558). Furthermore, prolactin and testosterone mean level in men and the estradiol mean level in women have shown no significant P value (P=0.2077, P=0.1446, P=0.1351, respectively). Conclusion: Results suggest that COVID-19 affects directly or non-directly glands and related hormones.

6.
World J Stem Cells ; 13(12): 1813-1825, 2021 Dec 26.
Article in English | MEDLINE | ID: covidwho-1626293

ABSTRACT

Despite various treatment protocols and newly recognized therapeutics, there are no effective treatment approaches against coronavirus disease. New therapeutic strategies including the use of stem cells-derived secretome as a cell-free therapy have been recommended for patients with critical illness. The pro-regenerative, pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), and bioactive factors have made them suitable candidates for respiratory tract regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including microvesicles and exosomes can be applied for communication at the intercellular level due to their abilities in the long-distance transfer of biological messages such as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and therefore, simulate the specifications of the parent cell, influencing target cells upon internalization and/or binding. EVs exhibit both anti-inflammatory and tolerogenic immune responses by regulation of proliferation, polarization, activation, and migration of different immune cells. Due to effective immunomodulatory and high safety including a minimum risk of immunogenicity and tumorigenicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-EVs could be used against COVID-19 induced morbidity and mortality after further mechanistic and preclinical/clinical investigations. This review is focused on the therapeutic perspective of the secretome of stem cells in alleviating the cytokine storm and organ injury in COVID-19 patients.

7.
J Drug Deliv Sci Technol ; 67: 102967, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1500027

ABSTRACT

The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.

8.
Mol Immunol ; 138: 121-127, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347762

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is a novel viral infection threatening worldwide health as currently there exists no effective treatment strategy and vaccination programs are not publicly available yet. T lymphocytes play an important role in antiviral defenses. However, T cell frequency and functionality may be affected during the disease. MATERIAL AND METHODS: Total blood samples were collected from patients with mild and severe COVID-19, and the total lymphocyte number, as well as CD4+ and CD8 + T cells were assessed using flowcytometry. Besides, the expression of exhausted T cell markers was evaluated. The levels of proinflammatory cytokines were also investigated in the serum of all patients using enzyme-linked immunesorbent assay (ELISA). Finally, the obtained results were analyzed along with laboratory serological reports. RESULTS: COVID-19 patients showed lymphopenia and reduced CD4+ and CD8 + T cells, as well as high percentage of PD-1 expression by T cells, especially in severe cases. Serum secretion of TNF-α, IL-1ß, and IL-2 receptor (IL-2R) were remarkably increased in patients with severe symptoms, as compared with healthy controls. Moreover, high levels of triglyceride (TG) and low density lipoprotein cholesterol (LDL-C), were correlated with the severity of the disease. CONCLUSION: Reduced number and function of T cells were observed in COVID-19 patients, especially in severe patients. Meanwhile, the secretion of proinflammatory cytokines was increased as the disease developed. High level of serum IL-2R was also considered as a sign of lymphopenia. Additionally, hypercholesterolemia and hyperlipidemia could be important prognostic factors in determining the severity of the infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cholesterol, LDL/blood , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Disease Progression , Female , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/virology , Male , Middle Aged , Prognosis , SARS-CoV-2/physiology , Severity of Illness Index , Triglycerides/blood
9.
Gene Rep ; 23: 101140, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1179486

ABSTRACT

BACKGROUND: As the daily number of coronavirus infection disease 19 (COVID19) patients increases, the necessity of early diagnosis becomes more obvious. In this respect, we aimed to develop a serological test for specifically detecting anti-SARS-CoV2 antibodies. METHODS: We collected serum and saliva samples from 609 individuals who work at TBZMED affiliated hospitals in Tabriz, Iran, from April to June of 2020. Real-time PCR technique was used to detect SARS-CoV-2 genome using specific primers. An enzyme linked immunosorbent assay (ELISA) test was designed based on virus nucleocapsid (N), spike (S) and its receptor binding domain (RBD) protein, and the collected sera were subjected to IgM and/or IgG analysis. RESULT: Real-time PCR results showed that 66 people were infected with the SARS-CoV-2. Our designed ELISA kit showed 93.75% and 98% of sensitivity and specificity, respectively. In this study, 5.74% of participants had specific IgG against RBD, whereas the percentage for IgM positive individuals was 5.58%. Approximately the same results were observed for S protein. The number of positive participants for NP increased further, and the results of this antigen showed 7.38% for IgG and 7.06% for IgM. CONCLUSION: The ELISA test beside real-time PCR could provide a reliable serologic profile for the status of the disease progress and early detection of individuals. More importantly, it possesses the potential to identify the best candidates for plasma donation according to the antibody titers.

10.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157592

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
11.
Immunol Invest ; 51(4): 993-1004, 2022 May.
Article in English | MEDLINE | ID: covidwho-1147073

ABSTRACT

BACKGROUND: Since the outbreak of the new coronavirus pandemic, the importance of carrying out an infection check to prevent acquisition and transmission among end-stage renal disease patients (ESRD) under maintenance hemodialysis (MHD) has become a major concern in the health care system. Applying serology screening tests could enlighten the view with regards to disease prevalence in dialysis wards. METHODS: We subjected 328 end-stage renal disease patients to maintenance hemodialysis. After dividing patients into suspicious and non-suspicious groups for COVID-19 infection based on their clinical manifestation, they were investigated for SARS-CoV-2 specific IgM and IgG screening against nucleoprotein (NP), spike protein (SP), and receptor-binding domain (RBD), utilizing our recently developed ELISA tests. RESULTS: We found that approximately 10.1% of asymptomatically tested cases were antibody positive. Although IgG positivity showed a higher prevalence than IgM across all three virus antigen subunits, there were no significant differences among mentioned immunoglobulins of the studied groups. The most prevalent antibody was from the IgG subtype against virus nucleoprotein (NP), while the lowest prevalence was attributed to receptor-binding domain (RBD) IgM. CONCLUSION: High seropositive rate among asymptomatic end-stage renal disease patients, as a sample of high-risk population, reflected the importance of considering SARS-CoV-2 specific antibody screening for disease containment.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunoglobulin G , Immunoglobulin M , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/therapy , Nucleoproteins , Prevalence , Renal Dialysis , SARS-CoV-2
12.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Article in English | MEDLINE | ID: covidwho-995973

ABSTRACT

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Immunomodulation/drug effects , Nanoparticles/therapeutic use , Th17 Cells/drug effects , Adult , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Nanoparticles/administration & dosage , SARS-CoV-2/drug effects , Severity of Illness Index , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Th17 Cells/metabolism
13.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-880513

ABSTRACT

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Cytokines/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Cytokines/genetics , Double-Blind Method , Female , Humans , Male , Micelles , Middle Aged , Nanotechnology , RNA, Messenger/analysis , Young Adult
14.
J Cell Physiol ; 236(4): 2829-2839, 2021 04.
Article in English | MEDLINE | ID: covidwho-756256

ABSTRACT

In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-ß [TGF-ß], and IL-10), and cytokine secretion levels (TGF-ß and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.


Subject(s)
COVID-19/immunology , Inflammation/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Aged , Cytokines/immunology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/immunology
16.
J Cell Physiol ; 235(12): 9098-9109, 2020 12.
Article in English | MEDLINE | ID: covidwho-607941

ABSTRACT

The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019-nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019-nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time-consuming and expensive to obtain. Scientific simulations and more in-depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti-2019-nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019-nCoV. Computational-based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS-CoV-2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Biomedical Research , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Repositioning/methods , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL